Modulation of brain tumor capillaries for enhanced drug delivery selectively to brain tumor.

نویسندگان

  • Keith L Black
  • Nagendra S Ningaraj
چکیده

BACKGROUND The blood-brain tumor barrier (BTB) significantly impedes delivery of most hydrophilic molecules to brain tumors. Several promising strategies, however, have been developed to overcome this problem. METHODS We discuss several drug delivery methods to brain tumor, including intracerebroventricular, convection enhanced delivery, BBB/BTB disruption, and BTB permeability modulation, which was developed in our laboratory. RESULTS Using immunolocalization, immunoblotting, and potentiometric studies, we found that brain tumor capillary endothelial cells overexpress certain unique protein markers that are absent or barely detectable in normal capillary endothelial cells. We biochemically modulated these markers to sustain and enhance drug delivery, including molecules of varying sizes, selectively to tumors in rat syngeneic and xenograft brain tumor models. We also demonstrated that the cellular mechanism for vasomodulator-mediated BTB permeability increase is due to accelerated formation of pinocytotic vesicles that transport therapeutic molecules across the BTB. CONCLUSIONS Other methods to deliver drugs across the BTB are effective but have severe drawbacks. Our strategy targets BTB-specific proteins to increase antineoplastic drug delivery selectively to brain tumors with few or no side effects, thus increasing the possibility of improving brain tumor treatment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adenosine 5'-triphosphate-sensitive potassium channel-mediated blood-brain tumor barrier permeability increase in a rat brain tumor model.

Brain tumor microvessels/capillaries limit drug delivery to tumors by forming a blood-brain tumor barrier (BTB). The BTB overexpresses ATP-sensitive potassium (K(ATP)) channels that are barely detectable in normal brain capillaries, and which were targeted for BTB permeability modulation. In a rat brain tumor model, we infused minoxidil sulfate (MS), a selective K(ATP) channel activator, to obt...

متن کامل

Magnetic Graphene Oxide Nanocarrier as a drug delivery vehicle for MRI monitored magnetic targeting of rat brain tumors

Introduction: Glioblastoma multiform is the most common malignant brain tumor, with an invasive nature. Despite the development of conventional therapies such as surgery, radiotherapy and chemotherapy, because of high recurrence rates, the prognosis remains very poor. Over the last decade, nanotechnology has represented an innovative method as nanoparticle-based drug delivery ...

متن کامل

Regulation of blood-brain tumor barrier permeability by calcium-activated potassium channels.

The blood-brain tumor barrier (BTB) limits the delivery of therapeutic drugs to brain tumors. We demonstrate in a rat brain tumor (RG2) model an enhanced drug delivery to brain tumor following intracarotid infusion of bradykinin (BK), nitric oxide (NO) donors, or agonists of soluble guanylate cyclase (sGC) and calcium-dependent potassium (K(Ca)) channels. We modulated K(Ca) channels by specific...

متن کامل

An overview of therapeutic approaches to brain tumor stem cells

 Primary and secondary malignant central nervous system (CNS) tumors are devastating invasive tumors able to give rise to many kinds of differentiated tumor cells. Glioblastoma multiform (GBM), is the most malignant brain tumor, in which its growth and persistence depend on cancer stem cells with enhanced DNA damage repair program that also induces recurrence and resists current chemo- and radi...

متن کامل

SRL-coated PAMAM dendrimer nano-carrier for targeted gene delivery to the glioma cells and competitive inhibition by lactoferrin

Glioma, as a primary tumor of central nervous system, is the main cause of death in patients with brain cancer. Therefore, development of an efficient strategy for treatment of glioma is worthy. The aim of the current study was to develop a SRL peptide-coated dendrimer as a novel dual gene delivery system for targeting the LRP receptor, an up-regulated gene in both BBB and glioma cells. To perf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer control : journal of the Moffitt Cancer Center

دوره 11 3  شماره 

صفحات  -

تاریخ انتشار 2004